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Abstract

The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The

contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has

obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon

sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes (Fday) and nighttime CO2 fluxes

(Rn) using remote sensing and other data. Fday and Rn were measured with a Bowen ratio–energy balance (BREB) technique in a sagebrush

(Artemisia spp.)–steppe ecosystem in northeast Idaho, USA, during 1996–1999. Micrometeorological variables aggregated across 14-day

periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were

determined during four growing seasons (1996–1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday

(R2 = 0.79, n = 66, P < 0.0001). Inclusion of evapotranspiration in the predictive equation led to improved predictions of Fday (R2 = 0.82,

n = 66, P < 0.0001). Crossvalidation indicated that regression tree predictions of Fday were prone to overfitting and that linear regression

models were more robust. Multiple regression and regression tree models predicted Rn quite well (R
2 = 0.75–0.77, n = 66) with the regression

tree model being slightly more robust in crossvalidation. Temporal mapping of Fday and Rn is possible with these techniques and would allow

the assessment of NEE in sagebrush–steppe ecosystems. Simulations of periodic Fday measurements, as might be provided by a mobile flux

tower, indicated that such measurements could be used in combination with iNDVI to accurately predict Fday. These periodic measurements

could maximize the utility of expensive flux towers for evaluating various carbon management strategies, carbon certification, and validation

and calibration of carbon flux models.
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1. Introduction

Increasing atmospheric CO2 concentrations and their

potential impacts on global change are the subject of wide-

spread studies, political debates, and international discus-

sions. Although the status of carbon stocks in both biomass

and soil organic matter has been estimated for various

ecosystems (Fallon et al., 1998; Gilmanov & Oechel,

1995; Hunt, Lavigne, & Franklin, 1999), CO2 fluxes from

these ecosystems and their driving forces are not well

understood either locally or globally (Cihlar et al., 2002).

Discussions to reduce or curtail the rate of atmospheric CO2

increases (Fallon et al., 1998; Pfaff et al., 2000) have

suggested that terrestrial (biological) sinks might be used

to partially offset industrial CO2 sources in a global market

system for carbon sequestration. The possible effectiveness

of these terrestrial sinks and the quantitative estimates of

their ‘‘sink strengths’’ have relied mainly on measurements

of changes in carbon stocks.

Recent developments in measurement techniques for

assessing CO2 fluxes provide tools for quantifying the net
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ecosystem exchange (NEE) of CO2 on a continuous, daily

basis at point sources. The potential value of these near real-

time measurements to quantify CO2 flux rates, their driving

forces, and annual fluxes has resulted in integrated research

efforts across a variety of land-cover and land-use types as

seen in the Ameriflux Network (Desjardins, Hart, Macpher-

son, Schuepp, & Verma, 1992), Euroflux Network (Aubinet

et al., 2000), and a network of rangeland ecosystem sites in

the western USA established by the U.S. Department of

Agriculture’s Agricultural Research Service (USDA-ARS)

(Svejcar, Mayeux, & Angell, 1997). Sole reliance on field

point samples can lead to biased regional estimates of CO2

fluxes or production (Biondini, Lauenroth, & Sala, 1991;

Rahman, Gamon, Fuentes, Roberts, & Prentiss, 2001). The

extrapolation of site-specific data across broad spatial scales

requires a modeling approach to extend the site-specific

algorithms to similar land-cover types (Reich et al., 1999;

Running et al., 1999; Vourlitis et al., 2000). Establishing

these relationships could be the basis for mapping CO2

fluxes across landscapes and regions, and could assist in

evaluating various land-use management alternatives to

optimize carbon sequestration, including sink development

(Bounoua et al., 2000; Fallon et al., 1998; Gilmanov &

Oechel, 1995; Kelly, Hunt, Reiners, Smith, & Welker, 2002;

Prince & Steininger, 1999; Tucker, Fung, Keeling, &

Gammon, 1986; Williams, Eugster, Rastetter, McFadden,

& Chapin, 2000).

Quantification of carbon fluxes, either in natural systems

or under different management scenarios, can be accom-

plished across extended time periods by assessment of

carbon stocks (Bliss, Waltman, & Petersen, 1995; Fallon

et al., 1998; Gilmanov & Oechel, 1995) or across annual

time periods by measurement of CO2 fluxes with micro-

meteorological techniques such as eddy covariance and

Bowen ratio–energy balance (BREB) methods (Frank &

Dugas, 2001; Rosenberg, 1983; Sims & Bradford, 2001).

Micrometeorological approaches for estimating CO2 fluxes,

including the eddy covariance technique and the BREB

method, provide a means to estimate CO2 flux at specific

sites. A detailed description of micrometeorological and the

theories behind them can be found in Moncrieff, Valentini,

Greco, Seufert, and Ciccioli (1997). The eddy covariance

technique is a direct method of measuring fluxes and

measures vertical wind speed, wind direction, and CO2

concentration of air moving past a sampling point. The eddy

covariance method is advantageous because it is a direct

method of measurement; however, this method requires

electronically sophisticated equipment. Additionally, recent

studies indicate that energy fluxes such as net radiation (NR)

and soil heat flux should be determined concurrently with

eddy covariance measurements to correct fluxes for lack of

energy balance closure (Twine et al., 2000).

Indirect methods of measuring CO2 fluxes include the

aerodynamic and BREB techniques, which quantify the rate

of diffusion down a concentration gradient. The aerody-

namic method has the advantage that it uses simple instru-

mentation, but the technique has limitations within canopies

or in canopies with small gradients (Raupach, 1988). The

BREB technique is based on the law of energy conservation

and has been used extensively to determine the components

of energy balance and evapotranspiration as well as CO2

fluxes above various crop canopies (e.g., Baldocchi, Verma,

& Rosenberg, 1981; Dugas et al., 1991; Dugas, Heuer, &

Mayeux, 1999; Frank & Dugas, 2001; Kim, Verma, &

Rosenberg, 1989; Sims & Bradford, 2001; Verma & Rosen-

berg, 1975). The BREB method is advantageous because it

uses simpler sensors than eddy covariance techniques, but is

difficult to apply during periods when net radiation and

gradients in temperature are small (e.g., at sunrise and

sunset). Nevertheless, these micrometeorological techniques

have been well validated during the past 30 years (Mon-

crieff et al., 1997). Although eddy correlation and BREB

techniques have shown acceptable agreement in semiarid

environments (Unland, Houser, Shuttleworth, & Yang,

1996), reliable surface energy fluxes were easier to deter-

mine with the BREB method, but the eddy covariance

method provided greater accuracy for short time periods.

Modeled estimates of carbon fluxes or other biophysical

parameters can be mapped over regions using either phys-

ical models (Kohlmaier et al., 1997; Pan et al., 1998;

Randall, Dazlich, Zhang, & Denning, 1996) or empirical

statistical models (Paruelo, Epstein, Lauenroth, & Burke,

1997; Wylie, Harrington, Prince, & Denda, 1991). Statistical

models can reveal new useful relationships (De’ath &

Fabricius, 2000; Prince & Steininger, 1999) and are simple,

easily constructed, and work with relative or surrogate input

layers. Statistical techniques represent the population from

which the training samples were taken, but may be erro-

neous when extrapolated beyond the range (data values,

time, and space) of the training data (Asner & Wessman,

1997; Hall, Knapp, & Huemmrich, 1997). Functional mod-

els are often complex, include numerous assumptions, and

require accurate data inputs calibrated to standard physical

units (Bonan, 1995; Gilmanov, Parton, & Ojima, 1997; Hall

et al., 1997; Liu et al., 2002). Functional models typically

perform better than statistical models on unique or new

circumstances, but intensive input requirements often are a

major constraint. Functional models allow assessment of

long-term trends and can be used to evaluate various input

scenarios. Innovative combinations of remote sensing and

functional models have proven useful (Asner, Bateson,

Privette, El Saleous, & Wessman, 1998; Asner & Wessman,

1997; Field, Randerson, & Malmstrom, 1995; Liu et al.,

2002; Pfaff et al., 2000; Potter et al., 1993; Reich, Turner, &

Bolstad, 1999; Sellers et al., 1997; Williams et al., 2000).

Regional estimation and mapping of CO2 flux should utilize

simple algorithms (Reich et al., 1999) with remote sensing

input (Field, Gamon, & Penuelas, 1994; Hall, Townsend, &

Engman, 1995; Kelly et al., 2002; Reich et al., 1999;

Vourlitis et al., 2000).

Advanced Very High Resolution Radiometer (AVHRR)

Normalized Difference Vegetation Index (NDVI) data are
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well suited for studies of ecosystem dynamics from

regional to global scales. NDVI has successfully tracked

biophysical variables (Bartlett, Whitting, & Hartman,

1990; Chen & Brutsaert, 1998; Purevdorj, Tateishi, Ish-

iyama, & Honda, 1998; Seen, Mougin, Rambal, Gaston, &

Hiernaux, 1995; Wylie et al., 1991; Wylie, Meyer, Tieszen,

& Mannel, 2002), production (Gilabert, Masellin, Conese,

& Bindi, 1995; Paruelo et al., 1997), and CO2 fluxes

(Bartlett et al., 1990; Cihlar, Caromori, Schuepp, Desjar-

dins, & MacPherson, 1992; Mack, Desjardins, MacPher-

son, & Schuepp, 1990; Oechel et al., 2000) in grasslands

and shrublands. However, the decoupling of CO2 flux and

the vegetation indices were observed in the boreal forest

and attributed to very low radiation use efficiency (RUE)

of coniferous evergreens, incomplete accounting of below

canopy production, and canopy clumpiness (Gower,

Kucharik, & Norman, 1999; Loechel et al., 1997). The

integration of remotely sensed and CO2 flux data could

provide a more efficient and accurate modeling and pre-

diction of carbon fluxes at the landscape and regional

levels.

A widely spaced network of eddy covariance or BREB

flux towers would be required to insure model robustness

(Cihlar et al., 2002; Cohen & Justice, 1999; Reich et al.,

1999; Running et al., 1999) and to minimize spatial

autocorrelation effects for regional mapping with statisti-

cal models using remote sensing and GIS (Cairns, 2001).

However, networks of permanently located flux towers

are expensive to operate and maintain. Mobile flux towers

in combination with remote sensing techniques and mete-

orological data may help maximize the utility of flux

towers. Certification of carbon sequestration activities

(Gustavsson et al., 2000) could be monitored using

mobile flux towers combined with remote sensing and

models to predict fluxes when the tower is offsite. This

approach could be used to both increase CO2 flux data

for model development and improve the spatial represen-

tation of those data. The objective of our study was to

evaluate if remotely sensed NDVI can be used to predict

CO2 fluxes in a sagebrush–steppe ecosystem in central

Idaho, USA, and to determine if less frequent measure-

ments could accurately predict continuously measured

CO2 fluxes.

2. Theory

The instantaneous rate of CO2 flux or NEE can be

described in two alternative ways. NEE can be described

as the difference between gross primary productivity (GPP)

and respiration (R):

NEE ¼ GPP� R ð1Þ

which facilitates a better understanding of carbon balances

(Choudhury, 2000, 2001). In terms of the dynamics of the

total ecosystem carbon stock (Ct), NEE may be described

as:

NEE ¼ dC=dt þ E ð2Þ

where C is carbon density in an ecosystem, t is time, and E

denotes the rate of soil erosion, which can be significant

such as when grassland is converted to shrubland (Parizek,

Rostagno, & Sottini, 2002). The combination of flux tower

measurements (Eq. (1)) with the dynamics of carbon stock

assessment (Eq. (2)) opens the possibility of being able to

evaluate rates of soil erosion even in those cases when direct

experimental measurements of E are difficult.

The conceptual basis for modeling GPP is often Mon-

teith’s equation or the radiation use efficiency (RUE) model

(Field et al., 1995; Kelly et al., 2002; Monteith, 1977;

Paruelo et al., 1997; Potter et al., 1993; Rahman et al.,

2001). The RUE model defines the components of GPP for

a given time period as total absorbed photosynthetically

active radiation (APAR) and the RUE coefficient (e):

GPP ¼ e APAR ð3Þ

APAR can be derived from photosynthetically active

radiation (PAR) reaching the Earth’s surface (Lopez, Rubio,

Martinez, & Batlles, 2001) and the fraction of PAR

absorbed by plants (fPAR):

APAR ¼ PAR� fPAR ð4Þ

Relationships between remotely sensed data and fPAR

have been developed (Bartlett et al., 1990; Chen, 1996;

Gamon et al., 1995; Knyazikhin et al., 1999; Tieszen, Reed,

Bliss, Wylie, & DeJong, 1997; Wylie et al., 2002) and may

facilitate regional mapping of NEE and rangeland produc-

tion (Reeves, Winslow, & Running, 2001; Wylie et al.,

1991). The RUE framework may be useful in estimating net

primary production (NPP) (Turner et al., 2002) and CO2

fluxes, but must be carefully quantified (Gamon et al., 1995)

and may introduce regional biases (Choudhury, 2001).

Drought (Bartlett et al., 1990; Hanan, Prince, & Begue,

1995; Jamieson, Martin, Francis, & Wilson, 1995), photo-

synthetic pathway type (C3 versus C4; Hanan, Prince, &

Begue, 1997), variations in PAR (Rahman et al., 2001), and

land cover/vegetation structure (Asner et al., 1998; Gower et

al., 1999; Mack et al., 1990) affect the value of e.
The linear relationship between NPP or NEE and time-

integrated NDVI (iNDVI) (Seen et al., 1995) was princi-

pally driven by their relationship to GPP. Mapping of GPP

or surrogates, such as daytime fluxes (Fday), can be esti-

mated with remote sensing as one of the inputs (Reeves et

al., 2001; Vourlitis et al., 2000). Mapping of CO2 sources

and sinks and their strengths (NEE) requires that R must

also be mapped because GPP and R do not necessarily co-

vary (Anthoni, Law, & Unsowrth, 1999; Law, Williams,

Anthoni, Baldocchi, & Unsworth, 2000). Because the func-

tional relationships are different for GPP and R, Choudhury
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(2001) estimated daytime flux (Fday) rather than NEE to

minimize the confounding effects of nighttime fluxes (Rn),

and Vourlitis et al. (2000) separately mapped GPP and total

R. Respiration can be more relevant than GPP in the

determination of CO2 source and sink strengths (Gilmanov,

Johnson, & Saliendra, 2003; Valentini et al., 2000).

Although remotely sensed vegetation indices are more

closely correlated with GPP, they can help estimate R

components associated with autotrophic maintenance and

growth R, which are related to live canopy biomass (Li et

al., 2002) or GPP. The primary mechanism for predicting

and mapping R has been through temperature (Oechel et al.,

2000; Potter et al., 1993; Williams et al., 2000), while

others have questioned this approach (Glardina & Ryan,

2000). Soil water content or its surrogates also have been

shown to be an important variable for predicting R (Miel-

nick & Dugas, 2000; Raich, Potter, & Bhagawati, 2002;

Tufekcioglu, Raich, Isenhart, & Schultz, 2001; Valentini,

Gamon, & Field, 1995; Vourlitis et al., 2000), but soil

moisture was not always important (Bajracharya, Lal, &

Kimbal, 2000). Wind speed also can affect soil CO2 fluxes

associated with R (Massman, Sommerfeld, Mosier, &

Zeller, 1997; Rahman et al., 2001; Takle et al., 2000).

Others have used Rn, available from flux towers, to estimate

daytime R (Rahman et al., 2001; Williams et al., 2000).

Hyperbolic light–curve equations can derive GPP and R

estimates from flux tower data (Gilmanov et al., in press;

Vourlitis et al., 2000), where R would include both night-

time and daytime R.

3. Methods

3.1. Site description

The field site was at the U.S. Sheep Experiment Station

(44j16VN, 112j08VW), which is located 10 km north of

Dubois on the Upper Snake River Plain of northeast Idaho,

USA. The site is situated in the northeastern portion of the

sagebrush–steppe ecosystem (West, 1983) at an elevation of

about 1700 m. The dominant shrub, grass, and forb on the

study site were three-tipped sagebrush (Artemisia tripartita

Rydb.), bluebunch wheatgrass [Pseudoroegneria spicata

(Pursh) A Löve], and arrowleaf balsamroot [Balsamorhiza

saggitata (Pursh) Nutt.], respectively. Other important spe-

cies include green rabbitbrush [Chrysothamnus viscidiflorus

(Hook.) Nutt.], big sagebrush (Atremisia tridentata Nutt.),

needle-and-thread grass (Stipa comata Trin. and Rupr.), and

yarrow (Achillea millefolium L.).

Climate at the site is semiarid with cold winters and

warm summers. Mean annual precipitation for the area

during a 64-year period was 325 mm, which included 70

cm of snow; the area has a mean annual temperature of 6 jC
(NOAA, 1993). Temperatures range from 38 jC in summer

to � 34 jC in winter with a normal frost-free period of 70–

90 days (Blaisdell, 1958). Soils at the site are loamy and

derived from wind-blown loess, residue, or alluvium (Nat-

ural Resource Conservation Service [NRCS], 1995). Soil

characteristics are variable across the landscape because of

the varying thickness of parent material overlying the basalt

bedrock and are composed of three mollisols on slopes

ranging from 0% to 12%. With increasing depth and degree

of development, soils are classified as Typic Calcixerols

(Anatolian series), Pachic Haploxerolls (Maremma series),

and Pachic Argixerols (Akbash series).

3.2. Bowen ratio measurements

A relatively undisturbed area (400� 400 m) surrounded

by similar vegetation and soils was fenced in 1995 to

exclude grazing, and a BREB system was installed near

the center of the enclosure to obtain continuous measure-

ments of CO2 fluxes and associated micrometeorological

characteristics. The theory and operation of the BREB

system (Model 023/CO2 Bowen Ratio; Campbell Scientific)

are described in detail by Dugas (1993) and Dugas et al.

(1999). Briefly, CO2 and water vapor concentrations were

measured with an infrared gas analyzer (IRGA,1 Model LI-

6262; Li-Cor). Air samples from two heights (0.8 and 1.8 m

above the soil surface) were drawn and routed to the IRGA,

which measured the CO2 and water vapor concentration

gradients between the two heights. Air temperature gra-

dients at the two heights were simultaneously measured

with fine-wire, chromel–constantan thermocouples. The

CO2, water vapor, and temperature gradients were measured

every second, and the average gradients were calculated and

stored every 20 min with a data logger and storage module

(Models 21X and SM192; Campbell Scientific). Fluxes of

CO2, water vapor, and energy were calculated using 20-min

averages. The eddy diffusivity, which was assumed equal

for heat, water vapor, and CO2, was calculated from sensible

heat flux and temperature gradients. The CO2 flux was

calculated as the product of the eddy diffusivity and CO2

gradient and corrected for vapor density gradients at the two

heights (Webb, Pearman, & Leuning, 1980). The CO2 fluxes

estimated by the BREB technique were shown to be similar

to those measured by a closed chamber technique at two

sagebrush–steppe sites in the western USA (Angell, Svej-

car, Bates, Saliendra, & Johnson, 2001). Various techniques

have been used to fill in data gaps that occur in flux tower

measurements (Falge et al., 2001). Day-specific solutions of

nonlinear light–curve equations derived from the 20-min

flux data were used in this study to fill data gaps (Gilmanov

et al., in press).

During the 1996–1999 growing seasons, CO2 flux

measurements were summarized as net daytime fluxes

(Fday), Rn, and net 24-h fluxes (Fnet). The CO2 fluxes were

also averaged into time intervals that coincided with the

1 Any use of trade, product, or firm name is for description purposes

only and does not imply endorsement by the U.S. Government.
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NDVI biweekly composite periods and integrated across

each of these periods. In this study, we used Fday as an

approximation of GPP, similar to Choudhury (2001),

because Fday was routinely obtained with the BREB system

and Fday minimized the confounding effects of Rn, which

was estimated separately.

3.3. Satellite data

NDVI data are affected by cloud contamination and

atmospheric attenuation, which usually reduce the NDVI

value (Los, Justice, & Tucker, 1994). One method of

reducing these effects is maximum value compositing

(MVC); we used a compositing period of 14 days in our

study. A weighted least squares linear regression approach

to temporal NDVI smoothing was employed to reduce

signal contamination (Swets, Reed, Rowland, & Marko,

1999). We extracted NDVI values for the growing seasons

of 1996–1999. To define the start and end of the growing

season, we identified a well-defined trend change in NDVI

values using a backward-or forward-looking, moving-aver-

age technique (Reed et al., 1994). The duration of the

growing season was defined as the difference between the

start and end of season. Values of NDVI associated with

dormant vegetation or soil were used as a baseline to detect

changes that indicated the onset of greenness and the end of

the growing season. Linear temporal interpolation was used

to estimate daily smoothed NDVI, and the respective base-

line NDVI was subtracted. This was then summed for the

growing season and each 2-week MVC period. The CO2

fluxes were compared to the time-integrated, smoothed

NDVI values (iNDVI) for 2-week periods during the grow-

ing season, while iNDVI integrated across the growing

season was used for annual comparisons.

3.4. Statistical analysis

Linear regression analysis was used to establish relation-

ships between predictor variables and Fday and Rn from the

BREB flux tower using the independent variables listed in

Table 1. Regression residual plots were visually inspected to

assess assumptions of linearity and homogeneity of var-

iance. The robustness of the models across years was tested

using interaction and indicator variables with 1998 consid-

ered as the standard. The extra sums of squares principal

were used to test whether combined year effects of both

slope and intercept were significant beyond the sums of

squares accounted for by a simple model (Neter, Wasser-

man, & Kutner, 1983; Wylie, 1991). These multiple depend-

ent tests warranted a conservative level of testing (P < 0.01)

for year effects.

We were interested in determining if Fday and Rn pre-

diction could be improved with the additional meteorolog-

ical and site variables listed in Table 1 and the subsequent

application of regression tree techniques. Although not all of

these variables would be easily available as spatial data sets

across the landscape, they were quantified at the BREB

tower in our study. Regression tree techniques are used to

develop relationships and predictions that take nonlinearity

into consideration, account for high-order interactions, and

effectively use thematic or categorical data (De’ath &

Fabricius, 2000). These techniques hierarchically split the

data and then allowed development of predictive linear

equations for each of the various data subsets. Regression

trees are useful for both stratification (Joel, Schimel, Friedl,

Davis, & Dubayah, 1994; Prince & Steininger, 1999) and

prediction (De’ath & Fabricius, 2000). Three successive

regression trees were produced with each successive regres-

sion tree attempting to correct prediction errors in the

previous regression tree.2 The regression tree software

quantified the number of training observations in each

stratum in the regression tree models. The independent

regression variables utilized in each stratum or ‘‘leaf node’’

were ordered by decreasing relevance. A program, which

quantified the relative frequency of use of a variable in

stratification as well as the cumulative relevance rank of all

the independent variables for all the regressions, was writ-

ten. This information was used to summarize multiple and

sometimes complex series of successive regression trees.

To test the possibility of using periodic Fday data (as

might be provided by a mobile flux tower) compared to

continuous flux data, we divided our flux data into three

subsets (jack-knifing). Each subset simulated a revisit cycle

from a mobile flux tower during every third biweekly

composite period. Each of the three subsets had different

sequential starting biweekly composite periods. Two

biweekly composite periods for each subset were withheld

from the analysis and used as independent tests for each

sequence subset. As a result, regressions and regression

trees assessing mobile flux towers were trained on a third of

the data and tested on two-thirds of the data and repeated

three times.

Table 1

Possible independent variables used to predict daytime ( Fday) and

nighttime CO2 flux (Rn)

Variables Regression Regression

tree

Description

iNDVI X X Time-integrated Normalized

Difference Vegetation Index

PAR X X Photosynthetically active

radiation

ET X X Evapotranspiration

TAIR X X Air temperature

PPT X X Precipitation

VPD X X Vapor pressure deficit

WINDS X X Wind speed

RH X X Relative humidity

NR X Net radiation

TSOIL X Soil temperature at 4 cm

SOILW X Volumetric soil water content

2 See Committee models (www.rulequest.com/cubist-unix.html).
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4. Results and discussion

Values of Fnet, Fday, iNDVI, and precipitation (PPT) were

summed across NDVI composite periods 9–22 for 1996–

1999. Fnet and Fday were positive for all four growing

seasons and increased steadily from 1996 to 1999, although

iNDVI and PPT were lower in 1999 than 1998 (Fig. 1).

Values of Fnet varied widely during the growing seasons of

1996–1999. Rn, which is the difference between Fday and

Fnet, was reduced in 1999 and resulted in a slightly higher

Fnet in 1999 than in 1998. This occurred despite higher PPT

and iNDVI values in 1998. The weather characteristics and

CO2 fluxes during the various growing seasons varied

greatly during the study, suggesting that the derived models

would likely be robust across a wide range of climatic,

NDVI, and other input characteristics.

4.1. Daytime CO2 flux ( Fday)

Linear relationships between MVC iNDVI and Fday were

strong (R2 from 0.79 to 0.92) for all years (Fig. 2). MVC

periods with low or high precipitation were not associated

with underestimation or overestimation of Fday from iNDVI.

NDVI has been proposed as a surrogate for potential photo-

synthesis (Yoder & Waring, 1994). Decoupling of potential

and actual photosynthesis is typically driven by drought

stress or respiration (Gamon et al., 1995; Gower et al., 1999;

Law et al., 2000), but this was not readily apparent in our

data, despite the wide range in growing season NEE. This

may have been attributable to our use of a 14-day MVC

period. Estimation of CO2 fluxes from remotely sensed data

may be more problematic for shorter MVC time periods or

single days. Based on R2 and the regression standard error,

the strongest relationship between iNDVI and Fday occurred

in 1996, while the weakest occurred in 1998 (Fig. 2).

To assess the ability of iNDVI to predict the seasonal

progression of Fday, linear regression analyses were con-

ducted using all years and all biweekly composites with the

independent variables presented in Table 1. iNDVI was a

strong predictor of Fday (Table 2). In the analysis, C( p)

criteria (Freund & Littell, 1995) from all possible combina-

tions of independent variables identified iNDVI and ET as

the optimal independent variables; however, iNDVI com-

bined with PAR was also a strong predictor of Fday

(R2 = 0.81). Several methods for estimating spatial distribu-

tions of ET, precipitation, and temperature from remotely

sensed and ancillary data have been used (Bristow &

Campbell, 1984; Caselles, 1993; Choudhury & DiGirolamo,

1998; Kimball, Running, & Nemani, 1997; Thornton &

Running, 1999; Xie & Arkin, 1997) and allow spatial

mapping of these variables. The simple iNDVI regression

model was robust across years, but the multiple regression

model had significantly different relationships in 1999.

Accounting for significant year effects for 1999 with indi-

cator and interaction terms resulted in unique slope and

intercept coefficients (Neter et al., 1983) for 1999 and

increased the R2 value to 0.88 with no significant temporal

autocorrelation. The temporal dynamics of iNDVI, ET, PPT,

and Fday in 1999 (Fig. 3) indicated that early season PPT, or

maybe snow melt, may have contributed to deep soil water

storage, which the deep-rooted sagebrush and other shrubs

probably used later in the hot, dry summer to continue

photosynthesis into composite period 13. This peak in Fday

was not tracked well by iNDVI, indicating either possible

increases in RUE or incomplete removal of subpixel cloud

effects by compositing and temporal smoothing procedures.

The inclusion of ET in the multiple regression model

may somehow correct for variable RUE and R. Bartlett et al.

(1990) found that the relationship between NEE and NDVI

improved when ambient air temperature was included in the

Fig. 1. Cumulative net ( Fnet) and daytime ( Fday) CO2 fluxes, integrated NDVI (iNDVI), and precipitation (PPT) across the growing season (March–July) for

the 4 years of our study.
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model. Inclusion of ET in the model may partially account

for this phenomenon and possible variations in daytime R.

Crossvalidation results (Table 2) indicated that both the

simple iNDVI model and the iNDVI-ET model performed

similarly. Because these relationships were developed for

only one location, these relationships need to be examined

and tested at other locations.

If several flux towers were to be operated across several

years in the same ecosystem across the landscape, confi-

dence in the representativeness of the training samples to the

population would increase and should improve the robust-

ness of spatial predictions. The target population, however,

would necessarily be spatially constrained by the ecoregion

boundary and the particular land cover at the measurement

site. Resulting spatial and temporal predictions would allow

monitoring and assessment of arid and semiarid rangeland

ecosystems where the spatial and temporal variation of both

rainfall and plant production can be high. Comparisons with

other predictions of NEE and photosynthesis (Cohen &

Justice, 1999) could identify areas that require ground

 

Fig. 2. Relationships between 14-day iNDVI, daytime CO2 flux ( Fday), and 14-day precipitation (PPT) for the 4 years of our study.

Table 2

Model statistics for biweekly regression and regression tree models used to

estimate average 14-day diurnal CO2 flux ( Fday; g m� 2 C) during the

growing seasons of 1996–1999 (n= 66)

Model R2 R2 autocorrelationa R2 crossvalidation R2 1999b

NDVI 0.79 0.62 0.79

NDVI, ETc 0.82 0.69 0.81 0.88

Regression treed 0.85 0.77

a Temporal autocorrelation significant ( P< 0.01) and corrected for.
b Accounts for 1999 significantly different slopes and intercept

coefficients with indicator and interaction terms.
c Multicollinearity not a concern with a condition number of 8 < 30

(Freund & Littell, 1995).
d Not tested for temporal autocorrelation.
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validation or further investigation. Inclusion of MODIS

spatial and temporal estimates of LAI and fPAR could

further improve CO2 flux predictions, but such estimates

are only available beginning in 2000.

Regression tree analysis was used to produce a regres-

sion tree model with a slightly higher R2 value (0.85; Table

2). Crossvalidation with the regression tree analysis had a

lower R2 value (0.77), indicating that the regression tree

model may have had some overfitting, which reduced

robustness. Regression tree models perform better than

linear regressions on large data sets that exhibit complex,

nonlinear relationships and have interaction effects (De’ath

& Fabricius, 2000). In this case, a strong overall linear

relationship existed in the data.

These results indicated that iNDVI provided useful

prediction information about the Dubois site, which was

improved with the inclusion of ET in the model. The

addition of meteorological variables should allow refine-

ment of the iNDVI and Fday relationship to reflect variations

of RUE and daytime respiration. At this site, about 79% of

the variation in Fday was explained by iNDVI. Remote

sensing may complement gap-filling techniques for Fday

when data gaps span large time frames, or where other

techniques may be forced to extrapolate rather than inter-

polate. These algorithms also could provide estimates for

other sites with similar characteristics.

4.2. Nighttime CO2 flux (Rn)

Similar analyses were conducted to estimate Rn (Table 3).

None of the Rn regression models had significant year

effects. ET was the best single predictor of Rn, which

 

Fig. 3. Seasonal trends of 14-day iNDVI, evapotranspiration (ET), daytime CO2 flux ( Fday), and precipitation (PPT) for the 4 years of our study.
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outperformed iNDVI (R2 = 0.34) and accounted for about

half the variability in Rn. Similar R2 values for the overall

model and the crossvalidation modeling indicated this

model was reasonably robust. Actual ET measured by the

flux tower (ET) consists of evaporation and plant transpira-

tion components. In this sagebrush–steppe ecosystem, ET

was more strongly associated with iNDVI, NR, and PAR

(R2 = 0.74, 0.74, and 0.62) than air temperature (TAIR) and

vapor pressure deficit VPD (R2 = 0.44 and 0.19). The

transpiration component of ET is likely more significant

than the evaporation component in this ecosystem because

iNDVI, net radiation (NR), and PAR are related to photo-

synthesis. This supports observed relationships with live-

canopy biomass and R observed in rangelands of Inner

Mongolia (Li et al., 2002).

The multiple regression relationship accounted for 75%

of the variation in Rn, and crossvalidation indicated that this

relationship was robust (Table 3). The selected independent

variables in Table 3 were listed in order of relevancy with

ET being the most relevant. Temperature has an important

impact on Rn and was the third most relevant variable.

However, there was no simple linear or nonlinear relation-

ship between TAIR and Rn (R
2 = 0.12). Moisture availability

was important for soil respiration processes. The variables

in the multiple regression analysis that were related to soil

moisture were PPT, VPD, and ET. The least relevant

variable, WINDS, plays an important role in CO2 fluxes

affecting fetch area and mixing effects between the soil and

atmosphere.

The regression tree model used only ET for stratification

and eight variables to predict Rn (Table 4). The two most

consistently used, highly relevant variables were associated

with light availability (NR and PAR) followed by several

variables associated with moisture [soil water content

(SOILW) and VPD]. PPT, which was used in the multiple

regression, was not used by the regression tree, and iNDVI

was only slightly used. Crossvalidation indicated that regres-

sion tree models would have better prediction accuracies on

withheld test data from this site (R2 = 0.71; Table 3). Pre-

diction of Rn was more complex than prediction of Fday, and

the lack of a strong overall linear relationship resulted in the

regression tree models having the best predictability. These

techniques for estimating Fday and Rn, if developed from

multiple sites and years, would allow large area mapping of

the seasonal dynamics of Fday and Rn. In addition, large area

assessment of Fnet could allow the monitoring of CO2 fluxes

that incorporate spatial and temporal dynamics present in

arid and semiarid rangeland ecosystems.

4.3. Mobile tower simulation

If periodic rather than continuous measurements of Fday

could be used in combination with iNDVI data to accurately

predict CO2 fluxes, then it may be possible to collect Fday

and Rn flux data across multiple sites with a single mobile

flux tower. This might improve the accuracy of both

mechanistic and statistical models that estimate Fday, Rn,

or NEE. Mobile towers also might allow an assessment of

CO2 fluxes and, in combination with remote sensing, may

better account for temporal variations in CO2 fluxes and

thereby provide more accurate assessments of Fday across

landscape or regional levels. Such an approach may allow a

single flux tower to accurately monitor CO2 fluxes at several

sites, maximizing the utility of expensive flux towers. This

may allow evaluations of different management treatments,

carbon certification at several sites, and more effective

parameterization and validation of CO2 flux models.

Regression coefficients were quite stable across all three

sequence periods for the simple regression between Fday and

iNDVI (Table 5). Temporal autocorrelation was not signifi-

cant (P < 0.05) in any of the sequence regressions. Most

variability occurred in the slope coefficient, and the con-

fidence interval for all observations overlapped the slope

estimates for the three sequence periods. This and the

magnitudes of the standard errors of the regression indicated

that reasonably accurate and unbiased estimates of Fday

Table 3

Model statistics for biweekly regression and regression tree models

estimating average 14-day nighttime CO2 flux (Rn; g m� 2 C) for the

growing seasons of 1996–1999 (n= 66)

Model R2 R2 autocorrelationa R2 crossvalidation

ET 0.53 0.46 0.52

ET, PPT, TAIR,

VPD, WINDS

0.75b 0.66

Regression treec 0.77 0.71

a Temporal autocorrelation significant ( P< 0.01) and corrected for.
b Multicollinearity not a concern with a condition number of 8 < 30

(Freund & Littell, 1995).
c Not tested for temporal autocorrelation.

Table 4

Regression tree variables used to stratify and predict average 14-day

nighttime CO2 flux (Rn; g m2 C)

Variables Stratification

(% utilization)

Prediction

weight

NR 0 0.9

PAR 0 0.9

SOILW 0 0.5

VPD 0 0.5

ET 100 0.4

TAIR 0 0.3

WINDS 0 0.3

iNDVI 0 0.2

Table 5

Model statistics for the three time sequences and all observations pooled for

daytime CO2 flux ( Fday) regressed on iNDVI

Sequence Intercept S.E. Slope S.E. R2 S.E.

regression

1 � 4.06 1.07 3.76 0.43 0.79 2.38

2 � 4.80 1.00 4.34 0.41 0.85 2.24

3 � 4.16 1.26 4.01 0.52 0.75 2.83

All � 4.34 0.63 4.04 0.26 0.79 2.44
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would be obtained with iNDVI and periodic Fday measure-

ments with a repeat cycle of every 6 weeks. Continuous flux

measurements provided only a minor improvement in the

standard error of the regression.

The parameters for the multiple regression relationships

with iNDVI and ET were also robust across the three

sequence periods, and regression coefficients for the indi-

vidual sequence periods overlapped with those derived from

all observations (Table 6). These results indicated that

periodic measurements of Fday, as provided by mobile

towers, could be used to accurately assess Fday with only

minimal losses in flux information. Mobile flux measure-

ments could also provide a spatial assessment of CO2 fluxes

by allowing three times the number of locations to be

monitored with the same equipment.

5. Summary

Subdividing NEE or Fnet into components of Fday and Rn

allowed predictive models to be developed for both Fday and

Rn. These component models for predicting Fday and Rn are

more functionally based than a model for predicting NEE.

Remotely sensed iNDVI alone or iNDVI, in combination

with ET, was a strong predictor of biweekly values of Fday.

This suggests that iNDVI is an important driver to consider

for regional mapping of Fday CO2 fluxes. Regression tree

models provided robust predictions of Rn. Combining esti-

mates of Fday and Rn may be useful in accounting for both

temporal and spatial effects on carbon source and sink

relationships in highly variable arid and semiarid rangeland

ecosystems. This mapping also would be useful in deter-

mining the necessary timing and locations for monitoring

various management scenarios for carbon sequestration.

Mobile rather than stationary flux towers may allow a better

spatial representation of regional CO2 fluxes and facilitate

spatial extrapolation of fluxes with minimal loss of accuracy

from site-specific flux measurements.
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